

ACIP COVID-19 Vaccines

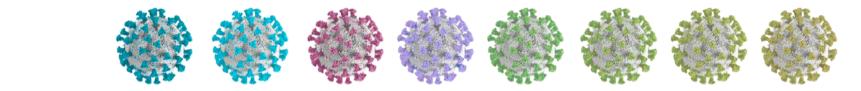
Update on Emerging SARS-CoV-2 Variants and Vaccine Considerations

CDR Heather Scobie PhD, MPH ACIP Meeting May 12, 2021

Background

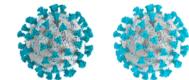
SARS-CoV-2 Variants

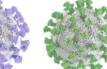
- Multiple SARS-CoV-2 variants circulating globally
 - Viruses constantly change through mutation, so new variants are expected
 - After emerging, some disappear; others persist
- CDC and others are studying these variants to understand whether they:
 - Spread more easily from person to person
 - Cause milder or more severe disease in people
 - Detected by available diagnostic tests
 - Respond to therapeutics currently used to treat people for COVID-19
 - Change effectiveness of COVID-19 vaccines

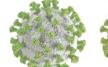


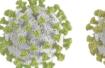
Variant Classifications

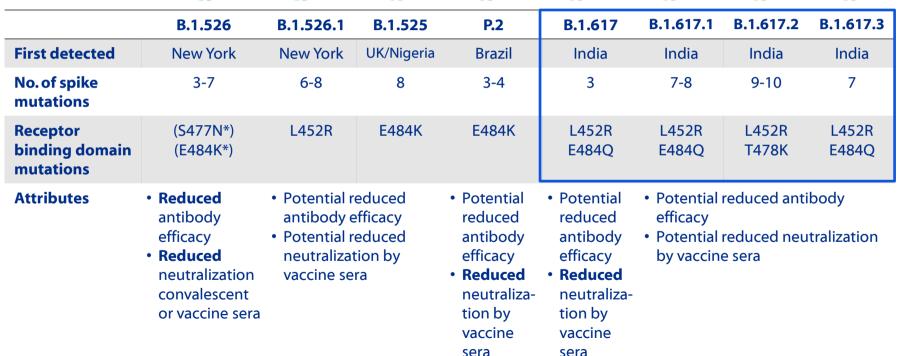
- Established in collaboration with the SARS-CoV-2 Interagency Group (SIG)
- Variant of Interest (VOI): Genetic markers associated with changes to receptor binding, reduced antibody neutralization, reduced efficacy of treatments, potential diagnostic impact, or predicted increase in transmissibility or disease severity
- Variant of Concern (VOC): Evidence of increased transmissibility, more severe disease, significant reduction in neutralization by antibodies, reduced effectiveness of treatments or vaccines, or diagnostic detection failures
- Variant of High Consequence (VOHC): Clear evidence that prevention measures or medical countermeasures have significantly reduced effectiveness [None yet]

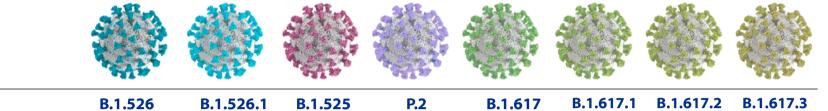

Variants of Interest


	B.1.526	B.1.526.1	B.1.525	P.2	B.1.617	B.1.617.1	B.1.617.2	B.1.617.3
First detected	New York	New York	UK/Nigeria	Brazil	India	India	India	India
No. of spike mutations	3-7	6-8	8	3-4	3	7-8	9-10	7
Receptor binding domain mutations	(S477N*) (E484K*)	L452R	E484K	E484K	L452R E484Q	L452R E484Q	L452R T478K	L452R E484Q
Attributes	 Reduced antibody efficacy Reduced neutralization convalescent or vaccine sera 	 Potential reduced antibody efficacy Potential reduced neutralization by vaccine sera 		 Potential reduced antibody efficacy Reduced neutraliza- tion by vaccine sera 	 Potential reduced antibody efficacy Reduced neutraliza- tion by vaccine sera 	efficacy	reduced anti reduced neu e sera	


SARS-CoV-2 Variants Classifications & Definitions | CDC (*) = detected in some sequences but not all

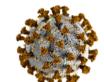

Variants of Interest





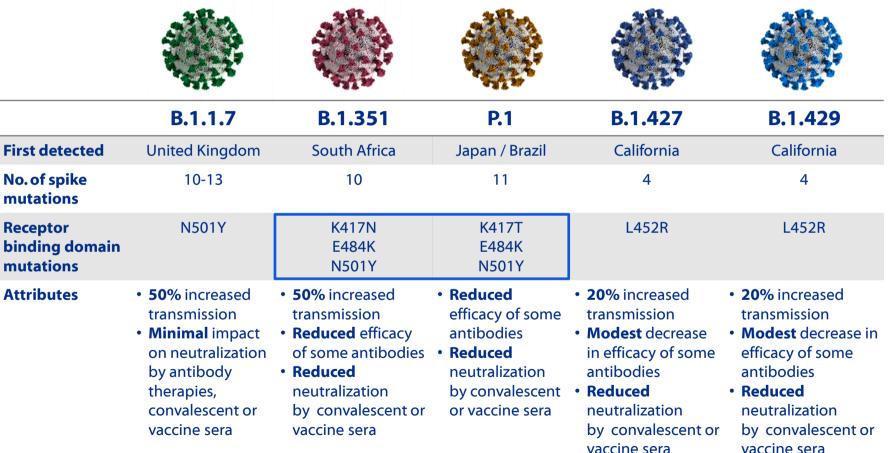


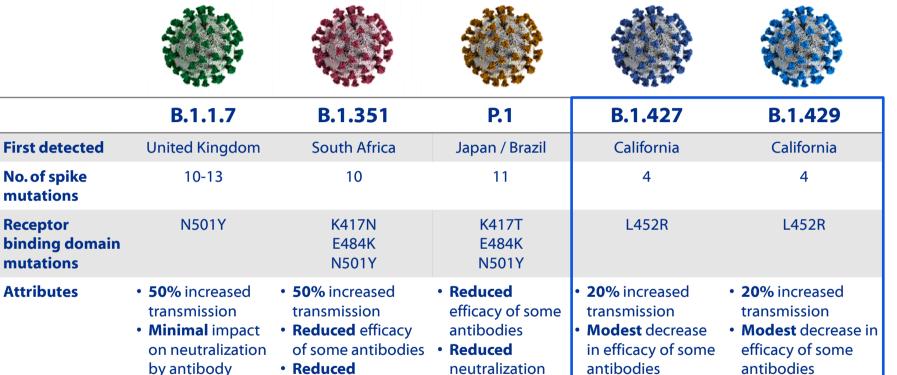
Variants of Interest



	B.1.520	B.1.520.1	B.1.525	P.2	B.1.017	D.1.017.1	D.1.017.2	D.1.017.5
First detected	New York	New York	UK/Nigeria	Brazil	India	India	India	India
No. of spike mutations	3-7	6-8	8	3-4	3	7-8	9-10	7
Receptor binding domain mutations	(S477N*) (E484K*)	L452R	E484K	E484K	L452R E484Q	L452R E484Q	L452R T478K	L452R E484Q
Attributes	 Reduced antibody efficacy Reduced neutralization convalescent or vaccine sera 	 Potential reduced antibody efficacy Potential reduced neutralization by vaccine sera 		 Potential reduced antibody efficacy Reduced neutraliza- tion by vaccine sera 	 Potential reduced antibody efficacy Reduced neutraliza- tion by vaccine sera 	efficacy	reduced anti reduced neu e sera	

Variants of Concern




	B.1.1.7	B.1.351	P.1	B.1.427	B.1.429
First detected	United Kingdom	South Africa	Japan / Brazil	California	California
No. of spike mutations	10-13	10	11	4	4
Receptor binding domain mutations	N501Y	K417N E484K N501Y	K417T E484K N501Y	L452R	L452R
Attributes	 50% increased transmission Minimal impact on neutralization by antibody therapies, convalescent or vaccine sera 	 50% increased transmission Reduced efficacy of some antibodies Reduced neutralization by convalescent or vaccine sera 	 Reduced efficacy of some antibodies Reduced neutralization by convalescent or vaccine sera 	 20% increased transmission Modest decrease in efficacy of some antibodies Reduced neutralization by convalescent or vaccine sera 	 20% increased transmission Modest decrease in efficacy of some antibodies Reduced neutralization by convalescent or vaccine sera

SARS-CoV-2 Variants Classifications & Definitions | CDC

Variants of Concern

Variants of Concern

by convalescent

or vaccine sera

Reduced

neutralization

vaccine sera

by convalescent or

Reduced

neutralization

vaccine sera

by convalescent or

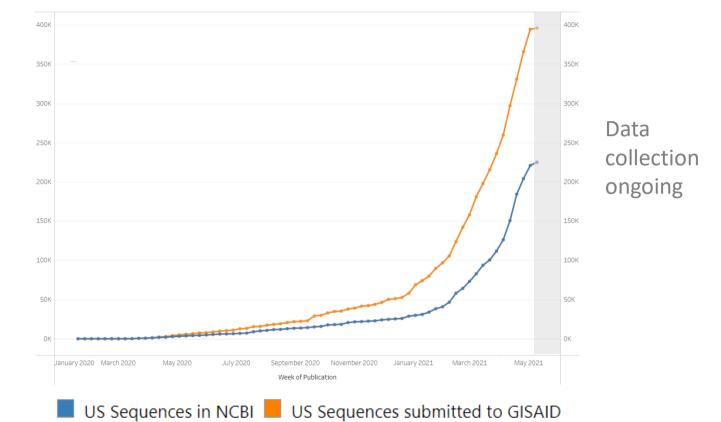
SARS-CoV-2 Variants Classifications & Definitions | CDC

therapies,

vaccine sera

convalescent or

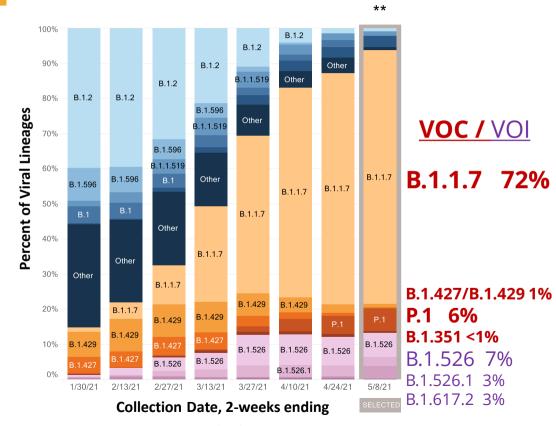
neutralization


vaccine sera

by convalescent or

Genomic Surveillance & Epidemiology of SARS-CoV-2 Variants

U.S. Sequences Available in Public Repositories


6%-9% of SARS-CoV-2 positive cases sequenced weekly

CDC COVID Data Tracker

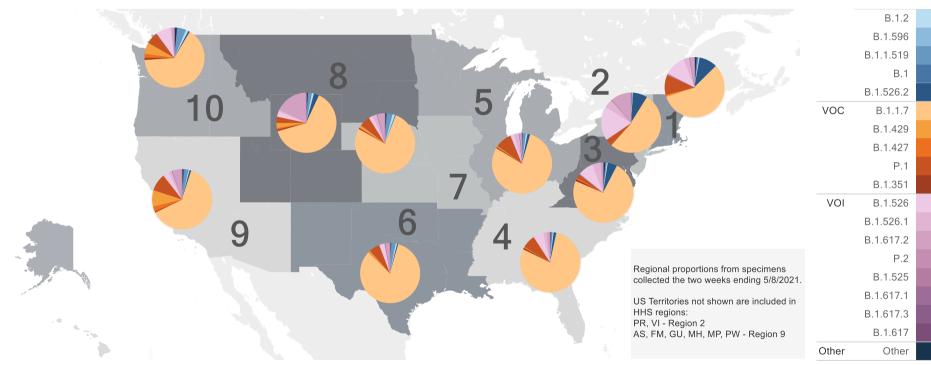
As of 5/11/21

NCBI=National Center for Biotechnology Information; GISAID, a global initiative maintaining a repository of viral sequencing data

National SARS-CoV-2 Variant Proportions, United States January 17 – May 8, 2021 with NOWCAST

Estimates for April 25-May 8, 2021

	Lineage	Туре	%Total	95%PI	
Most	B.1.1.7	VOC	72.4%	67.4-77.1%	
common	B.1.526	VOI	6.8%	4.2-9.6%	
lineages	P.1	VOC	6.2%	3.7-9.1%	
	B.1.617.2	VOI	3.3%	1.4-5.7%	
	B.1.526.2		3.1%	1.4-5.1%	
	B.1.526.1	VOI	2.8%	1.1-4.5%	
	B.1.1.519		1.2%	0.3-2.3%	
	B.1.2		0.7%	0.0-1.7%	
	B.1		0.3%	0.0-1.1%	
	B.1.596		0.1%	0.0-0.6%	
Additional VOI/VOC lineages	B.1.429	VOC	0.9%	0.0-2.0%	
	B.1.351	VOC	0.6%	0.0-1.4%	
	B.1.427	VOC	0.4%	0.0-1.1%	
	B.1.525	VOI	0.2%	0.0-0.8%	
	B.1.617.1	VOI	0.2%	0.0-0.6%	
	P.2	VOI	0.0%	0.0-0.3%	
	B.1.617.3	VOI	0.0%	0.0-0.3%	
Other*	Other		0.8%	0.0-4.0%	

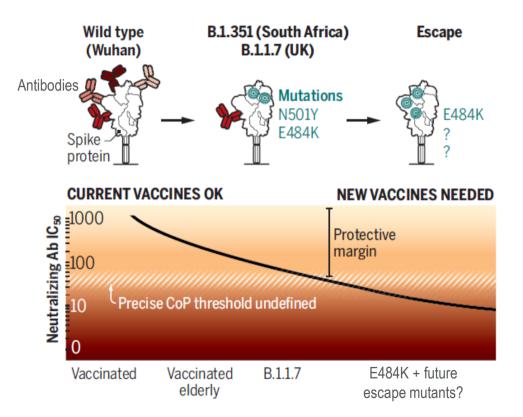

 * Other represents >200 additional lineages, which are each circulating ϵ <1% of viruses

** These data include Nowcast estimates, which are modeled projections that may differ from weighted estimates generated at later dates

CDC COVID Data Tracker As of 5/11/21; VOC=Variant of Concern; VOI=Variant of Interest

Regional SARS-CoV-2 Variant Proportions April 25 – May 8, 2021 with NOWCAST

Lineage


CDC COVID Data Tracker As of 5/11/21; VOC=Variant of Concern; VOI=Variant of Interest

Vaccine Effectiveness Against SARS-CoV-2 Variants

Vaccine-Induced Antibody Protection and Variants

- Robust correlation between vaccine efficacy (VE) versus:
 - Neutralizing titer (ρ = 0.79)
 - Binding antibody titer ($\rho = 0.93$)
- Correlate of protection, or threshold that protects against SARS-CoV-2, not yet determined
- Variants result in reduced protective antibody levels
 - Lower VE and increased breakthrough infection?
 - Shorter duration of immunity?

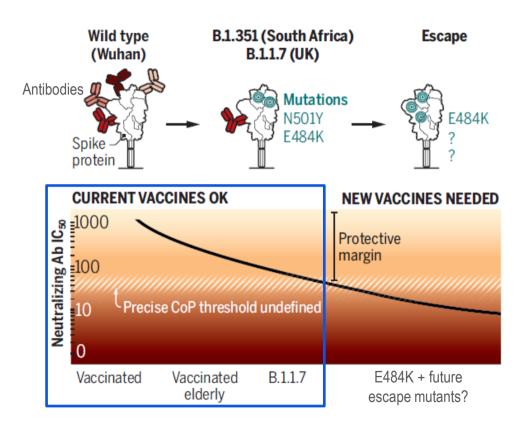


Figure Source: Altman et al (2021): <u>https://science.sciencemag.org/content/371/6534/1103</u> Earle et al. medRxiv preprint (March 20, 2021): <u>https://doi.org/10.1101/2021.03.17.20200246</u>

Vaccine-Induced Antibody Protection and Variants

- Robust correlation between vaccine efficacy (VE) versus:
 - Neutralizing titer (ρ = 0.79)
 - Binding antibody titer ($\rho = 0.93$)
- Correlate of protection, or threshold that protects against SARS-CoV-2, not yet determined
- Variants result in reduced protective antibody levels
 - Lower VE and increased breakthrough infection?
 - Shorter duration of immunity?

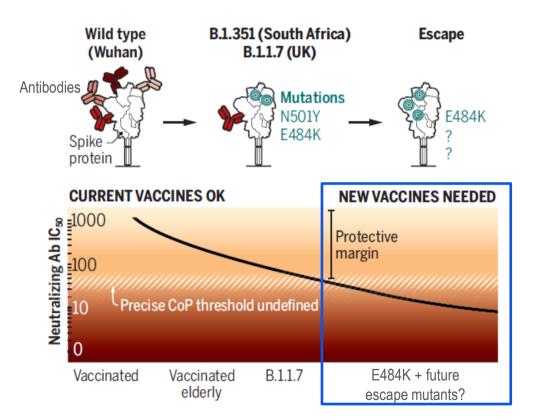


Figure Source: Altman et al (2021): <u>https://science.sciencemag.org/content/371/6534/1103</u> Earle et al. medRxiv preprint (March 20, 2021): <u>https://doi.org/10.1101/2021.03.17.20200246</u>

Vaccine-Induced Antibody Protection and Variants

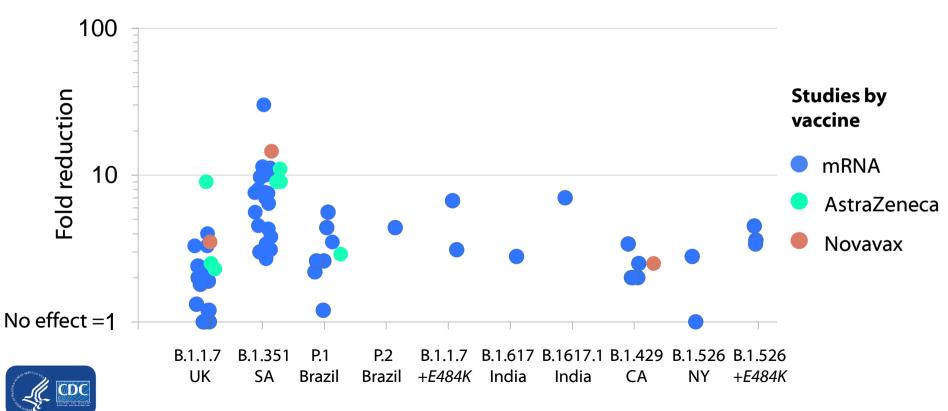

- Robust correlation between vaccine efficacy (VE) versus:
 - Neutralizing titer (ρ = 0.79)
 - Binding antibody titer ($\rho = 0.93$)
- Correlate of protection, or threshold that protects against SARS-CoV-2, not yet determined
- Variants result in reduced protective antibody levels
 - Lower VE and increased breakthrough infection?
 - Shorter duration of immunity?

Figure Source: Altman et al (2021): <u>https://science.sciencemag.org/content/371/6534/1103</u> Earle et al. medRxiv preprint (March 20, 2021): <u>https://doi.org/10.1101/2021.03.17.20200246</u>

Reduced Neutralization Activity of Vaccine Sera Relative to Wildtype/Dominant Strain, by Study (n=31)

Discussion of Lab Studies

- Largest impacts: B.1.351 (SA) > P.1 (Brazil) > B.1.1.7 (UK), B.1.427/B.429 (CA)
- Difficult to estimate how results might translate to clinical protection
 - Neutralizing antibodies in sera from mRNA vaccine recipients higher than COVID-19 convalescent sera
- Variation in results may be explained by different experimental conditions
 - Neutralization assays replicating & nonreplicating pseudovirus vs. SARS-CoV-2
 - Sera time post-vaccination, or population (e.g., age, COVID-19 history)
 - Use of limited or full sets of spike mutations vs. clinical isolates of variants
- Limitation for all studies small sample sizes and lack generalizability
 - Almost half of studies are preprints, not yet peer-reviewed

Vaccine Efficacy or Effectiveness (VE) Against Variants

Vaccine	Study type	VE
Pfizer	Post-EUA	 90% against B.1.1.7 in Qatar* 75% against B.1.351 in Qatar
Janssen	Pre-EUA	 74% in U.S. 66% in Brazil (69% of cases from P.2) 52% in S. Africa (95% of cases from B.1.351)
Novavax	Pre-EUA Pre-EUA	 96% against non-B.1.1.7 in UK 86% against B.1.1.7 in UK 51% against B.1.351 in S. Africa
AstraZeneca	Pre-EUA Pre-EUA	 84% against non-B.1.1.7 in UK 75% against B.1.1.7 in UK 10% against B.1.351 in South Africa**

* >85% in UK & Israel (predominate B.1.1.7): <u>https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/fully-vaccinated-people.html</u> Abu-Radad and Butt. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants | NEJM

https://www.fda.gov/media/146217/download

Novavax.: https://ir.novavax.com/news-releases/news-release-details/novavax-covid-19-vaccine-demonstrates-893-efficacy-uk-phase-3

Shinde et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant | NEJM

Madhi et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant | NEJM

Emary et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7)- The Lancet **mild/moderate illness

Vaccine Efficacy or Effectiveness (VE) Against Variants

Vaccine	Study type	VE
Pfizer	Post-EUA	 90% against B.1.1.7 in Qatar* 75% against B.1.351 in Qatar critical disease
Janssen	Pre-EUA	 74% in U.S. 66% in Brazil 52% in S. Africa 73-82% for severe/critical disease in each country
Novavax	Pre-EUA Pre-EUA	 96% against non-B.1.1.7 in UK 86% against B.1.1.7 in UK 51% against B.1.351 in S. Africa
AstraZeneca	Pre-EUA Pre-EUA	 84% against non-B.1.1.7 in UK 75% against B.1.1.7 in UK 10% against B.1.351 in South Africa*

* >85% in UK & Israel (predominate B.1.1.7): <u>https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/fully-vaccinated-people.html</u> Abu-Radad and Butt. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants | NEJM

https://www.fda.gov/media/146217/download

Novavax.: https://ir.novavax.com/news-releases/news-release-details/novavax-covid-19-vaccine-demonstrates-893-efficacy-uk-phase-3

Shinde et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant | NEJM

Madhi et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant | NEJM

Emary et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7):- The Lancet **mild/moderate illness

Investigating COVID-19 Vaccine Breakthrough Cases

- Despite high vaccine efficacy, vaccine breakthrough cases* expected
 - Some will be caused by variants, even if vaccine has similar effectiveness against variants
- Among 95 million fully vaccinated in U.S., 9,245 breakthrough infections** reported by state & territorial health departments to passive surveillance
 - Case investigation and whole genome sequencing to identify variants
- Starting soon CDC project with Emerging Infections Program sites on frequency of SARS-CoV-2 variants among vaccinated and unvaccinated people

* Vaccine breakthrough case: Person with SARS-CoV-2 RNA or antigen detected in respiratory specimen collected ≥14 days after completing primary series of an FDA-authorized COVID-19 vaccine <u>** COVID-19 Breakthrough Case Investigations and Reporting | CDC</u> as of 4/26/21 Tehran et al. https://www.cdc.gov/mmwr/volumes/70/wr/mm7017e1.htm

Do SARS-CoV-2 Variants Cause More Breakthrough Cases?

- One preprint study from Israel assessed variants of concern (VOC) in infections of Pfizer-vaccinated cases vs. unvaccinated matched controls
- Context: B.1.1.7 dominant strain; B.1.351 <1% of all specimens
- At least a week after 2nd dose matched OR = 8.0 for B.1.351
 - Among 149 pairs, 8 vaccinated and 1 unvaccinated persons had B.1.351
- 2 weeks after 1st dose to 1 week after 2nd dose matched OR = 2.6 for B.1.1.7
 - Among 245 pairs, 221 vaccinated and 205 unvaccinated persons had B.1.1.7
- Conclusion: breakthrough infection more frequent with VOCs
- Limitations: not yet peer-reviewed, small sample sizes (especially B.1.351)

Summary of Preliminary Data: Implications of SARS-CoV-2 Variants of Concern on Vaccine Effectiveness

- B.1.1.7
 - Exponential increase in prevalence in United States
 - Minimal impact on VE; attention needed for additional substitutions in receptor binding domain (RBD), such as E484K
- B.1.351
 - Currently low prevalence in United States
 - Moderate impact on VE for some vaccines, though may still provide protection against severe disease
- P.1
 - Increasing prevalence in United States; same 3 RBD mutations as B.1.351
 - Additional data needed on potential impact on VE

Boosters and Second-Generation Vaccines Against SARS-CoV-2 Variants

- Manufacturers launching booster studies of current vaccines and/or developing second-generation vaccines against B.1.351
- Moderna preliminary phase 2 results of single 50 µg booster of authorized (mRNA-1273) and variant-specific vaccine (mRNA-1273.351)
 - 6-8 months after primary series (pre-booster), low/undetectable neutralizing antibody titers for B.1.351 and P.1, but titers against wild-type still likely protective
 - Both vaccines acceptable safety; boosted immunity to all types (wild-type, B.1.351, P.1)
 - mRNA-1273.351 booster more effective than mRNA-1273 at neutralizing B.1.351
 - In progress bivalent vaccine with 1:1 mix of original & variant vaccine (mRNA-1273.211)

Wu et al. medRxiv preprint (May 6, 2021): <u>https://doi.org/10.1101/2021.05.05.21256716</u> <u>https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-positive-initial-booster-data-against-sars-cov/</u> <u>https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-initiate-study-part-broad-development</u>

Updates to Vaccines to Address SARS-CoV-2 Variants

- Periodic update of SARS-CoV-2 vaccines likely needed
- FDA defined data needed to support EUA amendment for a vaccine addressing emerging SARS-CoV-2 variants — immunogenicity studies
- U.S. SIG* developing an evaluation and risk assessment framework
 - Evidence needed to recommend whether modified vaccine needed
- WHO has role in global coordination, developing risk assessment framework

Variants: Implications for Vaccine Policy

- Current prevention measures and authorized vaccines offer protection against SARS-CoV-2 variants
 - Efforts needed to increase uptake
- Continue to monitor evidence:
 - Emergence and spread of SARS-CoV-2 variants
 - Vaccine effectiveness
 - Breakthrough infections in vaccinated or previously infected persons
 - Ability of postvaccination serum to neutralize emerging variant viruses
- ACIP will review evidence submitted for any next generation vaccines



Acknowledgements

- Lab Task Force
 - Vivien Dugan
 - Nicole Paterson
 - Alison Laufer Halpin
 - Sarah Talarico
 - David Wentworth
 - Summer Galloway
- Epi Task Force
 - Adam MacNeil
 - Prabasaj Paul

- Vaccine Task Force (VTF)
 - Marc Fischer
 - Leisha Nolen
 - Sara Oliver
 - Steve Hadler
 - Julia Gargano
 - ACIP WG Team
- Division of Viral Diseases
 - Natalie Thornburg
 - Ben Silk

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

